Teperdexrian

The Interesting, The Strange, The News.

Posts Tagged ‘satellite

Declassified US Spy Satellites Reveal Rare Look at Secret Cold War Space Program

leave a comment »

Twenty-five years after their top-secret, Cold War-era missions ended, two clandestine American satellite programs were declassified Saturday (Sept. 17) with the unveiling of three of the United States’ most closely guarded assets: the KH-7 GAMBIT, the KH-8 GAMBIT 3 and the KH-9 HEXAGON spy satellites.

The vintage National Reconnaissance Office satellites were displayed to the public Saturday in a one-day-only exhibit at the Smithsonian National Air and Space Museum’s Udvar-Hazy Center at Dulles Airport, Va. The three spacecraft were the centerpiece of the NRO’s invitation-only, 50th Anniversary Gala celebration held at the center last evening.

Saturday’s spysat unveiling was attended by a number of jubilant NRO veterans who developed and refined the classified spacecraft and its components for decades in secret, finally able to show their wives and families what they actually did ‘at the office’ for so many years. Both of the newly declassified satellite systems, GAMBIT and HEXAGON, followed the U.S. military’s frontrunner spy satellite system CORONA, which was declassified in 1995.

This National Reconnaissance Office released graphic depicts the huge HEXAGON spy satellite, a Cold War era surveillance craft that flew reconnaissance missions from 1971 to 1986.

This National Reconnaissance Office released graphic depicts the huge HEXAGON spy satellite, a Cold War era surveillance craft that flew reconnaissance missions from 1971 to 1986. The bus-size satellites weighed 30,000 pounds and were 60 feet long.

Big spy satellites revealed

The KH-9 HEXAGON, often referred to by its popular nickname “Big Bird,” lived up to its legendary expectations. As large as a school bus, the KH-9 HEXAGON carried 60 miles of high resolution photographic film for space surveillance missions.

Military space historian Dwayne A. Day was exuberant after his first look at the KH-9 HEXAGON.

“This was some bad-ass technology,” Day told SPACE.com. “The Russians didn’t have anything like it.”

Day, co-editor of “Eye in the Sky: The Story of the CoronaSpy Satellites,” noted that “it took the Soviets on average five to 10 years to catch up during the Cold War, and in many cases they never really matched American capabilities.”

Phil Pressel, designer of the HEXAGON’s panoramic ‘optical bar’ imaging cameras, agreed with Day’s assessment.

“This is still the most complicated system we’ve ever put into orbit …Period.”

The HEXAGON’s twin optical bar panoramic mirror cameras rotated as the swept back and forth as the satellite flew over Earth, a process that intelligence officials referred to as “mowing the lawn.”

Phil Pressel, one of the developers of the KH-9 Hexagon's panoramic camera system, proudly points out some of the spacecraft's once highly-classified features, which he had been unable to discuss publicly until the NRO's Sept. 17, 2011 declassification.of

Phil Pressel, one of the developers of the KH-9 Hexagon’s panoramic camera system, proudly points out some of the spacecraft’s once highly-classified features, a life’s work that he had been unable to discuss publicly until the NRO’s Sept. 17, 2011 declassification of the massive spy satellite.

Each 6-inch wide frame of HEXAGON film capturing a wide swath of terrain covering 370 nautical miles — the distance from Cincinnati to Washington — on each pass over the former Soviet Union and China. The satellites had a resolution of about 2 to 3 feet (0.6 to nearly 1 meter), according to the NRO. [10 Ways the Government Watches You]

According to documents released by the NRO, each HEXAGON satellite mission lasted about 124 days, with the satellite launching four film return capsules that could send its photos back to Earth. An aircraft would catch the return capsule in mid-air by snagging its parachute following the canister’s re-entry.

In a fascinating footnote, the film bucket from the first KH-9 HEXAGON sank to the bottom of the Pacific Ocean in spring 1972 after Air Force recovery aircraft failed to snag the bucket’s parachute.

The film inside the protective bucket reported contained high resolution photographs of the Soviet Union’s submarine bases and missile silos. In a daredevil feat of clandestine ingenuity, the U.S. Navy’s Deep Submergence Vehicle Trieste II succeeded in grasping the bucket from a depth of 3 miles below the ocean.

Hubble vs. HEXAGON

Former International Space Station flight controller Rob Landis, now technical manager in the advanced projects office at NASA’s Wallops Flight Facility in Virginia, drove more than three hours to see the veil lifted from these legendary spacecraft.

Landis, who also worked on NASA’s Hubble Space Telescope program, noticed some distinct similarities between Hubble and the huge KH-9 HEXAGON reconnaissance satellite.

“I see a lot of Hubble heritage in this spacecraft, most notably in terms of spacecraft size,” Landis said. “Once the space shuttle design was settled upon, the design of Hubble — at the time it was called the Large Space Telescope — was set upon. I can imagine that there may have been a convergence or confluence of the designs. The Hubble’s primary mirror is 2.4 meters [7.9 feet] in diameter and the spacecraft is 14 feet in diameter. Both vehicles (KH-9 and Hubble) would fit into the shuttle’s cargo bay lengthwise, the KH-9 being longer than Hubble [60 feet]; both would also fit on a Titan-class launch vehicle.”

The ‘convergence or confluence’ theory was confirmed later in the day by a former spacecraft designer, who declined to be named but is familiar with both programs, who confided unequivocally: “The space shuttle’s payload bay was sized to accommodate the KH-9.”

The NRO launched 20 KH-9 HEXAGON satellites from California’s Vandenberg AFB from June 1971 to April 1986.

The HEXAGON’s final launch in April 1986 — just months after the space shuttle Challenger explosion — also met with disaster as the spy satellite’s Titan 34D booster erupted into a massive fireball just seconds after liftoff, crippling the NRO’s orbital reconnaissance capabilities for many months.

A side view of a KH-7 GAMBIT spy satellite on display at the Smithsonian National Air and Space Museum's Udvar-Hazy Center at Dulles Airport, Va., on Sept. 17, 2011.

A side view of a KH-7 GAMBIT spy satellite on display at the Smithsonian National Air and Space Museum’s Udvar-Hazy Center at Dulles Airport, Va., on Sept. 17, 2011.

The spy satellite GAMBIT

Before the first HEXAGON spy satellite systems ever launched, the NRO’s GAMBIT series of reconnaissance craft flew several space missions aimed at providing surveillance over specific targets around the world.

The  satellite program’s initial system, GAMBIT 1, first launched in 1963 carrying a KH-7 camera system that included a “77-inch focal length camera for providing specific information on scientific and technical capabilities that threatened the nation,” according to an NRO description. A second GAMBIT satellite system, which first launched aboard GAMBIT 3 in 1966, included a175-inch focal length camera.

The GAMBIT 1 series satellite has a resolution similar to the HEXAGON series, about 2 to 3 feet, but the follow-up GAMBIT 3 system had an improved resolution of better than 2 feet, NRO documents reveal.

The GAMBIT satellite program was active from July 1963 to April 1984. Both satellites were huge and launched out of Vandenberg Air Force Base.

The satellite series’ initial version was 15 feet (4.5 m) long and 5 feet (1.5 m) wide, and weighed about 1,154 pounds (523 kilograms). The GAMBIT 3 satellite was the same width but longer, stretching nearly 29 feet (9 m) long, not counting its Agena D rocket upper stage. It weighed about 4,130 pounds (1,873 kg).

Unlike the follow-up HEXAGON satellites, the GAMBIT series were designed for extremely short missions.

The GAMBIT 1 craft had an average mission life of about 6 1/2 days. A total of 38 missions were launched, though 10 of them were deemed failures, according to NRO documents.

The GAMBIT 3 series satellites had missions that averaged about 31 days. In all, 54 of the satellites were launched, with four failures recorded.

Like the CORONA and HEXAGON programs, the GAMBIT series of satellites returned their film to Earth in re-entry capsules that were then snatched up by recovery aircraft. GAMBIT 1 carried about 3,000 feet (914 meters) of film, while GAMBIT 3 was packed with 12,241 feet (3,731 meters) of film, NRO records show.

The behemoth HEXAGON was launched with 60 miles (320,000 feet) of film!

A mission description of the NRO's GAMBIT 3 spy satellite flight profiles.

This image shows the flight profile for the NRO’s GAMBIT 3 spy satellite missions between 1966 and 1984. The program was declassified in Sept. 2011.

HEXAGON and GAMBIT 3 team up

During a media briefing, NRO officials confirmed to SPACE.com that the KH-8 GAMBIT 3 and KH-9 HEXAGON were later operated in tandem, teaming-up to photograph areas of military significance in both the former Soviet Union and China.

The KH-9 would image a wide swath of terrain, later scrutinized by imagery analysts on the ground for so-called ‘targets of opportunity.’ Once these potential targets were identified, a KH-8 would then be maneuvered to photograph the location in much higher resolution.

“During the era of these satellites — the GAMBIT and the HEXAGON — there was a Director of Central Intelligence committee known as the ‘Committee on Imagery Requirements and Exploitation’ that was responsible for that type of planning,” confirmed the NRO’s Robert McDonald, Director of the Center for the Study of National Reconnaissance.

NASA’s Rob Landis was both blunt and philosophical in his emotions over the declassification of the GAMBIT and HEXAGON programs.

“You have to give credit to leaders like President Eisenhower who had the vision to initiate reconnaissance spacecraft, beginning with the CORONA and Discoverer programs,” Landis said. “He was of the generation who wanted no more surprises, no more Pearl Harbors.”

“Frankly, I think that GAMBIT and HEXAGON helped prevent World War III.”

 

Via Space

Incredible time-lapse video from the International Space Station

leave a comment »

It took Phileas Fogg 80 days to circumnavigate the world but, thanks to the wonders of technology, it is now possible to do it in just a minute.

This whirlwind video tour of the planet is a compilation of time-lapse images shot from the International Space Station (ISS).

James Drake spliced together the images from the ISS, which travels at about 220 miles above the surface, to create the one-minute footage which he posted online – and it has become an internet sensation.

Science teacher Mr Drake used some 600 free-to-access images on the website The Gateway to Astronaut Photography of Earth, and knitted them together so everyone can enjoy the amazing view of North and South America.

The Earth is shown at night - and the yellow flashes here show the ionosphere - a part of the upper atmosphere, comprising portions of the mesosphere, thermosphere and exosphere

The Earth is shown at night – and the yellow flashes here show the ionosphere – a part of the upper atmosphere, comprising portions of the mesosphere, thermosphere and exosphere.

The science teacher, James Drake, stitched together over 600 images to create the amazing video

The science teacher, James Drake, stitched together over 600 images to create the amazing video.

The film, which was uploaded on September 15 and has attracted almost 50,000 hits on YouTube, starts over the Pacific Ocean and then moves over North and South America before entering daylight near Antarctica.

Some cities and landmarks can be spied, and they include, in chronological order, Vancouver Island, Victoria, Vancouver, Seattle, Portland, San Fransisco, Los Angeles, Phoenix, various large conurbations in Texas, New Mexico, Mexico City, the Gulf of Mexico, and the Yucatan Peninsula.

Further around lightning can be seen in the Pacific Ocean, before other countries included in the video are Guatemala, Panama, Columbia, Ecuador, Peru, Chile, and the Amazon.

The sun is shown rising in the incredible pictures taken from the ISS, which takes 91 minutes to orbit the Earth

The sun is shown rising in the incredible pictures taken from the ISS, which takes 91 minutes to orbit the Earth.

Some 600 images were used to make the one-minute video

In addition, the Earth’s ionosphere (thin yellow line) and the stars of our galaxy can be made out in the fascinating footage.

The Gateway to Astronaut Photography of Earth, where Mr Drake downloaded the pictures from, has been storing over a million images from space, beginning with the Mercury missions in the early 1960s.

The website’s blurb reads: ‘Our database tracks the locations, supporting data, and digital images for these photographs.

‘We process images coming down from the International Space Station on a daily basis and add them to the 1,118,120 views of the Earth already made accessible on our website.’

The ISS has been manned for almost 11 years, and images of the Earth are regularly beamed back by their astronauts

The ISS has been manned for almost 11 years, and images of the Earth are regularly beamed back by their astronauts.

The ISS is currently on Expedition 29, and the astronauts will be on the space station until mid-November, when they will be replaced by another crew

The ISS is currently on Expedition 29, and the astronauts will be on the space station until mid-November, when they will be replaced by another crew.

The ISS, a habitable, artificial satellite in low Earth orbit, follows the Salyut, Almaz, Cosmos, Skylab, and MIR space stations, as the 11th space station launched into orbit by humanity.

It serves as a research laboratory that has microgravity environment in which crews conduct experiments in many fields including biology, human biology, physics, astronomy and meteorology.

The station has a unique environment for the testing of the spacecraft systems that will be required for missions to the Moon and Mars.

The station is expected to remain in operation until at least 2020, and potentially to 2028, when some Russian modules will be separated to form the OPSEK space station.

And the European Space Agency estimate that the cost of the station will be €100 billion over 30 years.

On November 2 last year the ISS marked its 10th anniversary of continuous human occupation, and it was launched almost 11 years ago, on October 31, 2000.

At the time of the anniversary, the station’s odometer read more than 1.5 billion statute miles (the equivalent of eight round trips to the Sun), over the course of 57,361 orbits around the Earth.

Flashes of lightening can be shown over the Pacific Ocean

Flashes of lightening can be shown over the Pacific Ocean.

The South American coast can be seen from the space station which travels at about 220 miles from the Earth's surface

The South American coast can be seen from the space station which travels at about 220 miles from the Earth’s surface.

The 29th expedition crew settled in to their new home for the next couple of months last week, with Mike Fossum commanding and being aided by Satoshi Furukawa and Sergei Volkov.

They will be up there, travelling about 17,000mph – meaning it takes about 91 minutes to orbit the Earth – until mid-November.

The Expedition 29 crew which will continue to support research into the effects of microgravity on the human body, biology, physics and materials.

The trio took over from Expedition 28 last week, and Commander Andrey Borisenko and Flight Engineers Alexander Samokutyaev and Ron Garan – who had spent 164 days in space – landed their Soyuz TMA-21 spacecraft in Kazakhstan a few seconds before midnight on Friday.

The space station and its large solar arrays is the size equivalent of an American football field – including the end zones – and weighs 861,804 pounds (390,908 kilograms), not including visiting vehicles.

The complex now has more liveable room than a conventional five-bedroom house, and has two bathrooms, a gymnasium and a 360-degree bay window.

The International Space year celebrated a decade of human occupation

The International Space year celebrated a decade of human occupation.

ISS IN NUMBERS

1.5bn: The number of statute miles the ISS managed in a decade (November 2, 2010)

57,361: Orbits around the Earth managed in the same time period

136: Number of launches to the ISS – up to September 2011 – since the launch of the first module, Zarya on November 1998

161: Total number of space walks performed from the ISS – over 1,015 hours

861,804: Pounds it weighs (390,908 kilograms)

2.3m: Number of lines of computer code used

17,239.2: Average speed – in miles per hour

91 minutes: Time it takes to orbit the Earth

€100bn: The estimated cost of the station over a 30-year period, by ESA

 

Via DailyMail

Written by Nokgiir

September 19, 2011 at 3:29 am

Nasa satellite UARS nearing Earth ‘could land anywhere’

leave a comment »

Upper Atmosphere Research Satellite

A five ton, 20-year-old satellite has fallen out of orbit and is expected to crash somewhere on Earth on or around 24 September, according to Nasa.

Nasa says the risk to life from the UARS – Upper Atmosphere Research Satellite – is just 1 in 3,200.

It could land anywhere between 57 degrees north and 57 degrees south of the equator – most of the populated world.

However, most of the satellite will break or burn up before reaching Earth.

Scientists have identified 26 separate pieces that could survive the fall through the earth’s atmosphere, and debris could rain across an area 400-500km (250-310 miles) wide.

Nasa said scientists would only be able to make more accurate predictions about where the satellite might land two hours before it enters the Earth’s atmosphere.

Falling space debris

Rocket propellant tank (Nasa)
  • Hardware re-enters at shallow angles (<1 degree)
  • Some 50 items weighing >1 tonne re-enter a year
  • Major break-up occurs about 80km altitude
  • 10-40% of dry mass on orbit will survive
  • Debris spreads over long, thin “footprints”
  • It can be a hazard to people and property

Re-entry

The 1 in 3,200 risk to public safety is higher than the 1 in 10,000 limit that Nasa aims for.

However, Nasa told reporters that nobody had ever been hurt by objects re-entering from space.

Members of the public are not allowed to keep pieces of the satellite that may fall to Earth, or sell them on eBay, as they remain the property of the US government.

The UARS was launched in 1991 by the Discovery space shuttle, and was decommissioned in 2005.

The latest satellite re-entry is much smaller than Skylab, a satellite that re-entered the earth’s atmosphere in 1979.

It was some 15 times heavier than the UARS, and when it crashed in Western Australia the US government had to pay clean-up costs to the Australian government.

Sputnik 2 crashed on Earth in 1958, travelling from over New York to the Amazon in 10 minutes. It was viewed by many people and left a trail of brightly coloured sparks behind it.

Via BBC

Written by Nokgiir

September 19, 2011 at 2:48 am

‘Super-Earth’ Found in Habitable Zone

leave a comment »

The Milky Way abounds with low-mass planets, including small, rocky ones such as Earth. That’s the main conclusion of a team of European astronomers, based on their latest haul of extrasolar planets. The new discoveries—55 new planets, including 19 “super-Earths”—were presented here today at the Extreme Solar Systems II conference by team leader Michel Mayor of the University of Geneva in Switzerland. “We find that 40% of all Sun-like stars are accompanied by at least one planet smaller than Saturn,” he says. The number of Earth-like planets is expected to be even higher.

The new planets were found with HARPS (High Accuracy Radial velocity Planet Searcher), an extremely sensitive instrument used to analyze starlight, mounted on the 3.6-meter telescope of the European Southern Observatory (ESO) at Cerro La Silla in northern Chile. HARPS detects the minute periodic wobbles of stars, caused by the gravity of orbiting planets. So far, HARPS has discovered 155 exoplanets, including two-thirds of all planets less massive than Neptune.

Of the 19 newly found super-Earths (exoplanets between a few and 10 times the mass of Earth), the most intriguing is HD 85512b, which weighs in at only 3.6 Earth masses. Its orbit lies in the habitable zone of its parent star, which means temperatures are just right for liquid water to exist on its surface, says Lisa Kaltenegger of the Max Planck Institute for Astronomy in Heidelberg, Germany. “We’re entering an incredibly exciting period in history.”

Meanwhile, scientists disagree about which technique offers the best chances of finding the first true “Earth analog”—an Earth-like planet orbiting in the habitable zone of its Sun-like star. (H85512b is too massive, and it’s star is too cool.) Mayor says HARPS might find this Holy Grail of exoplanet research within 5 years or so, after new upgrades to increase the instrument’s sensitivity. But planet hunter Geoffrey Marcy of the University of California, Berkeley, disagrees. NASA’s Kepler space telescope is “by far the best,” he says. “We will find them if they’re there, probably within the next 2 or 3 years.”

At the meeting, Kepler co-investigator Natalie Batalha of NASA’s Ames Research Center announced that the number of exoplanet candidates from the Kepler mission has increased by some 50% since last February, to 1781. Most are less than three times the size of the Earth. Kepler, launched in March 2009, finds planets by measuring the slight periodic dimming of their parent stars, when they happen to pass between the star and Earth.

No matter who finds the first Earth analog, the HARPS planets offer better prospects for detailed follow-up observations, Mayor says, because HARPS focuses on relatively nearby stars, while almost all Kepler stars are much farther away. For instance, ESO astronomer Markus Kissler-Patig predicts that the future 39.2-meter European Extremely Large Telescope (E-ELT) should be able to directly image HD 85512b. Analyzing the starlight it reflects will provide important information about the planet’s atmospheric composition. “The E-ELT will be able to probe for biomarkers,” Kissler-Patig says, referring to chemicals thought to indicate the presence of life.

While ESO is planning more-sensitive planet-hunting instruments for its existing Very Large Telescope and for the future E-ELT, Kepler is facing an uncertain future. “Kepler’s goal of finding true Earth analogs can only be reached by extending the mission duration” past its planned operational lifetime of 3.5 years, Batalha says. In February 2012, NASA will decide on a possible mission extension. Marcy is optimistic. Kepler is so incredibly successful, he says, that it seems unlikely NASA will terminate the mission next year. “I’m sure NASA is wiser than that.”

 

Via ScienceNow

Southern lights are sweeter in space

leave a comment »

NASA

The greenish glow of an auroral display sweeps around Earth’s south polar region in this photo, captured from a vantage point on the International Space Station. The shuttle Atlantis and its robotic arm, as well as one of the station’s solar arrays, loom up in the foreground.

The pilot for NASA’s last space shuttle flight, Doug Hurley, says one of the highlights of Atlantis’ trip to the International Space Station was seeing an “incredible” display of southern lights — and after seeing these pictures, I’d have to agree with him.

This photo from the space station shows the greenish auroral glow sweeping around the south pole, following the edge of the atmosphere. Atlantis is in the foreground with its robotic arm extended into the center of the frame, and one of the station’s gold-colored solar arrays juts in the right edge. You can even see the stars hanging in the night sky.

Another picture provides a more detailed view of the shimmering lights, with Atlantis’ inspection boom poking through the frame.

NASA

Thursday night’s southern lights shimmer in a picture taken from the International Space Station, with Atlantis’ inspection boom angling through the picture.

The southern lights, like the northern lights, are sparked when electrically charged particles from the sun interact with Earth’s magnetic field. For more amazing views of Atlantis’ auroras, check out NASA’s photo gallery for the shuttle mission, as well as Space.com’s report about the pictures.

 

– Alan Boyle.

Is the space effort dying or evolving?

leave a comment »

Pessimists are bemoaning the end of U.S. human spaceflight, but optimists see the next few years as a transition to a new paradigm that will energize commercial ventures and get astronauts beyond Earth orbit for the first time since the Nixon administration. Which way do you see it?

There seems to be plenty of gloom to go around as the space shuttle program nears its end. Hayden Planetarium director Neil deGrasse Tyson, a former member of the NASA Advisory Council and other commissions sizing up the space effort, had this to say via Twitter: “Apollo in 1969. Shuttle in 1981. Nothing in 2011. Our space program would look awesome to anyone living backwards through time.”

One of the astronauts on the first space shuttle flight in 1981, Bob Crippen, told me that he was disappointed that the shuttle program’s end would leave NASA “without the capability to put our astronauts in orbit ourselves.” And he questioned whether NASA had the right vision for future exploration. “I personally favored going to the moon,” he said.

The frustration flared up today during a House committee hearing with NASA Administrator Charles Bolden as the sole witness, or sole target. “We have waited for answers that have not come,” Science, Space and Technology Committee Chairman Ralph Hall, R-Texas, told Bolden. “We have run out of patience. … I would like to point out today that the committee reserves the right to open an investigation into these continued delays and join the investigation initiated by the Senate.”

Bolden, a retired Marine general, took the hostile fire. “You have the right guy here to criticize,” he said. “I am the leader of America’s space program.”

He laid out the main points of the post-shuttle plan:

  • Rely on the Russians and other partners for resupply of the International Space Station, at least until U.S. companies can finish work on the space vehicles they’re developing with NASA’s backing. The first commercial cargo craft could be flying to the station by the end of this year, and U.S.-made “space taxis” could be taking on astronauts by 2015.
  • Continue work on the Orion crew vehicle, which should be capable of carrying four astronauts on more ambitious trips beyond Earth orbit. Orion had been canceled as part of the Constellation back-to-the-moon program, after $5 billion had been spent on the program, but it was essentially resurrected as NASA’s “multipurpose crew vehicle,” or MPCV.
  • Build a new Space Launch System, or SLS, which will be based on shuttle-era and Apollo-era rocket technology. The design for the SLS has not yet been announced, which is why members of Congress are so frustrated. Bolden said it could take until the end of summer or even longer to get the SLS plan through its financial review. Congress passed a law calling for the MPCV spaceship and the SLS rocket to be ready by 2016, but Bolden said the 2017-2020 time frame was more realistic.
  • NASA is aiming to send astronauts to a near-Earth asteroid by 2025, and to Mars and its moons by the mid-2030s. Other stopovers, ranging from the moon to gravitational balance points in outer space, may be added along the way.

“We are not abandoning human spaceflight,” Bolden said. “American leadership in space will continue for at least the next half century because we have laid the foundation for success.”

So there is an evolving plan for the future … just as there was an evolving plan for the space shuttle system in the early to mid-1970s when the Apollo program came to an end. Under the best-case scenario, that plan will lead to actual flights within four to six years, which is less time than it took between the last Saturn 5 and the first shuttle launch. But there are lots of questions surrounding the post-shuttle plan:

  • How much money will NASA get? A draft report from the House Appropriations Committee calls for trimming the space agency’s budget by roughly 10 percent. (For details, check Space Policy OnlineParabolic Arc and Space News.) NASA officials as well as commercial spaceship developers say that budget reductions will slow down the transition to post-shuttle spaceflight even more.
  • Will the commercial sector succeed? Right now, NASA is committed to paying the Russians $56 million for each seat on a station-bound Soyuz craft, and the price is due to go up in 2014. Commercial providers such as SpaceX, Sierra Nevada and the Boeing Co. say that they can beat that price, but that they need NASA’s money to help cover development costs. Shuttle program veterans say the commercial providers still have to prove that their craft will be safe and reliable.
  • Will the commercial space taxis for low Earth orbit and the Orion MPCV/SLS system for going beyond Earth orbit complement each other the way NASA hopes? Larry Price, Lockheed Martin Space Systems’ deputy manager for the Orion program, told me that the two-track system served as an insurance policy for the post-shuttle space effort. “There’s a little bit of competitive pressure,” he acknowledged. “If the commercial guys run into any problem or delay for any reason, then we could back them up. And similarly, if we don’t meet our milestones, the commercial guys could evolve into our niche.”

After 30 years of grand successes, tragic failures and unfulfilled promises, the era of the space shuttle is ending. We may not yet know exactly what kind of American spaceship will be the next to fly. And because of that, thousands of people will be laid off by NASA and its contractors in the weeks ahead. But we’re not witnessing the death of the American space program. At least that’s the way Elon Musk, the millionaire founder of SpaceX, sees it.

“As far as I’m concerned, it’s not the death of anything,” he told me. “What we’re really facing is quite the opposite. I think we’re at the dawn of a new era of spaceflight, one which is going to advance much faster than it ever has in the past.”

Now why would he say that? Over the next few days, we’ll be presenting a series of Q&A interviews with Musk and other folks involved in shaping the post-shuttle era. What they’ve told me runs counter to the gloom-and-doom talk, but you might well have a different opinion. Feel free to weigh in with your comments.

 

Alan Boyle

African volcano spied from space

leave a comment »

Robert Simmon, using EO-1 ALI data

The Nabro volcano has been erupting in the African nation of Eritrea since June 13. This image made with data from a NASA satellite is giving scientists one of their most detailed views of the remote, little-studied volcano.

A NASA satellite captured this spectacular false-color image of the Nabro volcano erupting in a remote region of the northeastern African country of Eritrea.

The bright red portions of the image indicate hot surfaces, NASA explains in an advisory. That’s why the hot volcanic ash spewing out of the volcano’s caldera glows red.

To the west of the ash cloud, portions of the lava flow are visible. The front edge is particularly hot, thus red. The speckled bits upstream in the lava flow are likely regions where the cool, hardened crust is splitting and exposing fluid lava as the flow advances.

The volcano is located in an isolated region of Eritrea near its border with Ethiopia. Scientists believe it began erupting on June 13. Ash from the volcano has disrupted flightsand cut short Secretary of State Hilary Clinton’s recent trip to Africa.

Despite these impacts, scientists say they know very little about the volcano. When it was first detected, in fact, scientists thought it was the nearby Dubbi volcano. Imagery such as this photo from NASA’s Earth Observing-1 satellite acquired on June 24 is providing the most detailed look at the eruption to date.

 

Via MSNBC

Discovery Adds Mystery to Earth’s Genesis

leave a comment »

Artist's conception of a dusty planet-forming disk orbiting a stellar object known as IRS 46.

Earth and the other rocky planets aren’t made out of the solar system’s original starting material, two new studies reveal.

Scientists examined solar particles snagged in space by NASA’s Genesis probe, whose return capsule crash-landed on Earth in 2004. These salvaged samples show that the sun’s basic building blocks differ significantly from those of Earth, the moon and other denizens of the inner solar system, researchers said.

Nearly 4.6 billion years ago, the results suggest, some process altered many of the tiny pieces that eventually coalesced into the rocky planets, after the sun had already formed.

“From any kind of consensus view, or longer historical view, this is a surprising result,” said Kevin McKeegan of UCLA, lead author of one of the studies. “And it’s just one more example of how the Earth is not the center of everything.”

Salvaging the samples

The Genesis spacecraft launched in 2001 and set up shop about 900,000 miles (1.5 million kilometers) from Earth. It spent more than two years grabbing bits of the solar wind, the million-mph stream of charged particles blowing from the sun.

The idea was to give scientists an in-depth look at the sun’s composition, which in turn could help them better understand the formation and evolution of the solar system.

To that end, Genesis sent its sample-loaded return capsule back to Earth in September 2004. But things didn’t go well; the capsule’s parachute failed to deploy, and it smashed into the Utah dirt at 190 mph (306 kph).

While some of Genesis’ samples were destroyed in the crash, others were salvageable, as the two new studies show. Two different research teams looked at the solar wind particles’ oxygen and nitrogen — the most abundant elements found in Earth’s crust and atmosphere, respectively.

And they did so with a great deal of care, knowing that the crash had limited their supplies of pristine solar material.

“The stakes were raised on the samples that did survive well,” McKeegan told SPACE.com. “There wasn’t as much to go around.”

The Genesis return capsule slammed into the Utah dirt at nearly 200 mph on Sept. 8, 2004 when its parachute failed to deploy.

The Genesis return capsule slammed into the Utah dirt at nearly 200 mph on Sept. 8, 2004 when its parachute failed to deploy.
CREDIT: NASA/JPL

Analzying oxygen

McKeegan and his team measured the abundance of solar wind oxygen isotopes. Isotopes are versions of an element that have different numbers of neutrons in their atomic nuclei. Oxygen has three stable isotopes: oxygen-16 (eight neutrons), oxygen-17 (nine neutrons) and oxygen-18 (ten neutrons).

The researchers found that the sun has significantly more oxygen-16, relative to the other two isotopes, than Earth. Some process enriched the stuff that formed our planet — and the other rocky bodies in the inner solar system — with oxygen-17 and oxygen-18 by about 7 percent.

While scientists don’t yet know for sure how this happened, they have some ideas. The leading contender, McKeegan said, may be a process called “isotopic self-shielding.”

About 4.6 billion years ago, the planets had not yet coalesced out of the solar nebula, a thick cloud of dust and gas. Much of the oxygen in this cloud was probably bound up in gaseous carbon monoxide (CO) molecules.

But the oxygen didn’t stay bound up forever. High-energy ultraviolet light from the newly formed sun (or nearby stars) blasted into the cloud, breaking apart the CO. The liberated oxygen quickly glommed onto other atoms, forming molecues that eventually became the rocky building blocks of planets.

Photons of slightly different energy were required to chop up the CO molecules, depending on which oxygen isotope they contained. Oxygen-16 is far more common than either of the other two, so there would have been much more of this substance throughout the solar nebula, researchers said.

The result, the self-shielding theory goes, is that many of the photons needed to break up the oxygen-16 CO were “used up,” or absorbed, on the edges of the solar nebula, leaving much of the stuff in the cloud’s interior intact.

By contrast, relatively more of the photons that could strip out oxygen-17 and oxygen-18 got through to the inner parts of the cloud, freeing these isotopes, which were eventually incorporated into the rocky planets. And that, according to the theory, is why the sun and Earth’s oxygen isotope abundances are so different.

“The result that we’re publishing this week gives support to the self-shielding idea,” McKeegan said. “But we don’t know the answer yet.”

Nitrogen, too

In a separate study, another research team led by Bernard Marty of Nancy University in France analyzed the nitrogen isotopes in Genesis’ samples. (Nitrogen has two stable isotopes: nitrogen-14, which has seven neutrons, and nitrogen-15, which has eight.)

Marty and his colleagues found an even more dramatic difference than McKeegan’s group did: The solar wind has about 40 percent less nitrogen-15 (compared to nitrogen-14) than do samples taken from Earth’s atmosphere.

Previous studies had hinted that the sun’s nitrogen might be very different from that of Earth, Mars and other rocky bodies in the inner solar system, Marty said. But the new study establishes this firmly.

“Before Genesis and the present measurement of the N isotopic composition of the solar wind and by extension of the sun, it was not possible to understand the logic of such variations,” Marty told SPACE.com in an email interview. “Now we understand that the starting composition, the solar nebula, was poor in 15N, so that variations among solar system objects are the result of mixing with a 15N-rich end-member.”

As to how this enrichment of nitrogen-15 could have happened, Marty as well suggests some type of self-shielding as a possible mechanism. But it’s not a certainty.

“This is a scenario that is consistent with present-day observations,” he said. “We cannot eliminate yet the possibility that these 15N-rich compounds were imported from outer space as dust in the solar system.”

The new results also suggest that most nanodiamonds — tiny carbon specks that are a major component of stardust — likely formed in our own solar system, because they share similar nitrogen isotope ratios with the sun. Some scientists have regarded nanodiamonds as being primarily presolar, thinking they were ejected from other stellar systems by supernova explosions.

Both studies appear in the June 23 issue of the journal Science.

Genesis’ legacy

The two new studies should help scientists get a better understanding of the solar system’s early days, researchers said.

And the results should help rehabilitate the reputation of the $264 million Genesis mission, showing that the capsule crash didn’t render it a failure, McKeegan said.

“We managed to accomplish all the science that we set out to do, all the important stuff,” he said. “The enduring image in everybody’s mind — the picture of the crashed spacecraft in the desert — will be more of a footnote instead of the primary thing that people remember. That’s my hope, anyway.”

 

Via Space

Solstice Sun Storm May Spark Dazzling Northern Lights Today

leave a comment »

Norwegian photographer and skywatcher Terje Sorgjerd created an amazing video of the March 2011 auroras, or northern lights, which appear in this still from his project, entitiled "The Aurora.”

Norwegian photographer and skywatcher Terje Sorgjerd created an amazing video of the March 2011 auroras, or northern lights, which appear in this still from his project, entitiled “The Aurora.” CREDIT: Terje Sorgjerd

A wave of sun particles unleashed during a strong solar flare this week is arriving at Earth today (June 24) and could touch off a dazzling northern lights display, NASA officials say.

The solar storm occurred Tuesday, June 21, during Earth’s solstice, which marked the first day of summer in the Northern Hemisphere and the start of winter in the Southern Hemisphere.

The storm triggered a powerful explosion on the sun, called a coronal mass ejection, which sent a vast wave of solar particles directly at Earth at a speed of about 1.4 million mph (2.3 million kph). Those particles are now buffeting Earth’s magnetic field in interactions that could amplify the planet’s polar auroras, also known as the northern and southern lights.

“High-latitude sky watchers should be alert for auroras,” officials with NASA’s Goddard Space Center said in an update today.

Sun photo of June 21, 2011 solar storm and eruption

The SOHO sun observatory caught this view of a large solar flare and coronal mass ejection (top of sun) erupting from the sun’s surface early June, 21, 2011. CREDIT: SOHO/NASA/ESA

Supercharged auroras

Auroras occur when solar wind particles collide with atoms of oxygen and nitrogen in Earth’s upper atmosphere. The interaction excites the atoms, which then emit light (the aurora) as they return to their normal energy level.

Tuesday’s solar flare registered as a class C7.7 flare (C-class flares are the weakest types of flares), but lasted for several hours. There are three classes of solar flares. M-class solar flares are medium-strength flares, while the most intense solar storms register as X-class flares.

There is a 30 percent to 35 percent chance of a minor geomagnetic storm in Earth’s atmosphere today from this week’s storm, NASA officials said.

 

Partial Halo Coronal Mass Ejection

A broadly widening cloud of particles, observed by SOHO’s C3 coronagraph, rushed away from the Sun as a coronal mass ejection (CME) erupted over about 12 hours (June 14, 2011). Data from the Solar Dynamics Observatory shows an eruptive prominence breaking away from the Sun about where the event originated. While the originating event did not appear to be substantial, the particle cloud was pretty impressive. The bright circle with an extending horizontal line (above and left of the blue occulting disk) is a distortion caused by the brightness of planet Mercury. CREDIT: SOHO (ESA & NASA)

The active sun

This week’s solar flare was detected by the space-based Solar and Heliospheric Observatory (SOHO) operated by NASA and the European Space Agency. It came just weeks after another strong solar flare on June 7, which unleashed a massive coronal mass ejection that stunned astronomers with its intensity.

The June 7 event  kicked up a wave of plasma that rained back down on the sun over an area 75 times the width of Earth. The leading edge of the particles that erupted from the sun were traveling at about 3.5 million mph (5.7 million kph), SOHO officials have said.

Another coronal mass ejection on June 14 unleashed an eerie wave of material that formed a partial halo as it expanded into space.

The most severe solar storms, when aimed at Earth, can pose a danger to astronauts in space, satellites and even ground-based communications and power systems. This week’s solar flare, however, is not powerful enough to pose a serious risk, NASA officials said.

The sun is currently in an active period of its 11-year solar cycle. NASA and other space and weather agencies are keeping a close watch on the sun using space-based observatories, satellites and ground-based monitoring systems.

 

Via Space

Ice spray shooting out of Saturn moon points to a giant ocean lurking beneath its surface

leave a comment »

Scientists have collected the strongest evidence yet that Saturn moon Enceladus has a large saltwater ocean lurking beneath its surface.

Samples of ice spray shooting out of the moon have been collected by the Nasa’s Cassini spacecraft during one of its frequent Saturn fly-bys.

The plumes shooting water vapor and tiny grains of ice into space were originally discovered emanating from Enceladus – one of 19 known moons of Saturn – by the Cassini spacecraft in 2005.

Samples of ice spray shooting out of Saturn moon Enceladus have been collected by Nasa's Cassini spacecraft. Scientists believe it is the strongest evidence yet that Enceladus has a large saltwater ocean lurking beneath its surface

Samples of ice spray shooting out of Saturn moon Enceladus have been collected by Nasa’s Cassini spacecraft. Scientists believe it is the strongest evidence yet that Enceladus has a large saltwater ocean lurking beneath its surface

They were originating from the so-called ‘tiger stripe’ surface fractures at the moon’s south pole and apparently have created the material for the faint E Ring that traces the orbit of Enceladus around Saturn.

During three of Cassini’s passes through the plume in 2008 and 2009, the Cosmic Dust Analyser (CDA) on board measured the composition of freshly ejected plume grains.

The icy particles hit the detector’s target at speeds of up to 11miles-per-second, instantly vaporising them. The CDA separated the constituents of the resulting vapor clouds, allowing scientists to analyse them.

The ice grains found further out from Enceladus are relatively small and mostly ice-poor, closely matching the composition of the E Ring. Closer to the moon, however, the Cassini observations indicate that relatively large, salt-rich grains dominate.

Lead researcher Frank Postberg, of the University of Heidelberg in Germany, said: ‘There currently is no plausible way to produce a steady outflow of salt-rich grains from solid ice across all the tiger stripes other than the salt water under Enceladus’ icy surface.’

Plumes, both large and small, spray water ice from multiple locations along the 'tiger stripes' near the south pole of Enceladus

Plumes, both large and small, spray water ice from multiple locations along the ‘tiger stripes’ near the south pole of Enceladus.

Co-author Sascha Kempf, of the University of Colorado Boulder, added: ‘The study indicates that “salt-poor” particles are being ejected from the underground ocean through cracks in the moon at a much higher speed than the larger, salt-rich particles.

‘The E Ring is made up predominately of such salt-poor grains, although we discovered that 99 per cent of the mass of the particles ejected by the plumes was made up of salt-rich grains, which was an unexpected finding.

‘Since the salt-rich particles were ejected at a lower speed than the salt-poor particles, they fell back onto the moon’s icy surface rather than making it to the E Ring.’

According to the researchers, the salt-rich particles have an ‘ocean-like’ composition that indicates most, if not all, of the expelled ice comes from the evaporation of liquid salt water rather than from the icy surface of the moon.

When salt water freezes slowly the salt is ‘squeezed out’, leaving pure water ice behind. If the plumes were coming from the surface ice, there should be very little salt in them, which was not the case, according to the research team.

Dwarfed: Enceladus can be seen near Saturn's south pole at the bottom of this image

Dwarfed: Enceladus can be seen near Saturn’s south pole at the bottom of this image

 The scientists believe that perhaps 50 miles beneath the surface crust of Enceladus a layer of water exists between the rocky core and the icy mantle that is kept in a liquid state by gravitationally driven tidal forces created by Saturn and several neighboring moons, as well as by heat generated by radioactive decay.

It is thought that roughly 440lbs of water vapor are lost every second from the plumes, along with smaller amounts of ice grains.

Calculations show the liquid ocean must have a sizable evaporating surface or it would easily freeze over, halting the formation of the plumes.

‘This study implies that nearly all of the matter in the Enceladus plumes originates from a saltwater ocean that has a very large evaporating surface,’ said Dr Kempf.

The team’s study is published in the journal Nature.

 

Via DailyMail