Teperdexrian

The Interesting, The Strange, The News.

Posts Tagged ‘astronomy

Scientists plan $1.5bn laser strong enough ‘to tear the fabric of space

leave a comment »

A laser powerful enough to tear apart the fabric of space could be built in Britain.

The major scientific project will follow in the footsteps of the Large Hadron Collider and will answer questions about the universe.

The laser will be capable of producing a beam of light so intense that it will be similar to the light the earth receives from the sun but focused on a speck smaller than a pin prick.

Extreme: A laser powerful enough to tear apart the fabric of space could be built in Britain

Extreme: A laser powerful enough to tear apart the fabric of space could be built in Britain.

Scientists say it will be so powerful they will be able to boil the very fabric of space and create a vacuum.

A vacuum fizzles with mysterious particles that come in and out of existence but the phenomenon happens so fast that no-one has ever actually been able to prove it.

It is hoped the Extreme Light Infrastructure Ultra-High Field Facility would allow scientists to prove the particles are real by pulling the vacuum fabric apart.

Scientists even believe it might help them to prove whether other dimensions actually exist.

This latest experiment will follow the footsteps of the Large Hadron Collider and be the next big scientific experiment

This latest experiment will follow the footsteps of the Large Hadron Collider and be the next big scientific experiment.

Professor John Collier, a scientific leader for the ELI project and director of the Central Laser Facility at Rutherford Appleton Laboratory in Didcot, Oxfordshire, said the laser would be the most powerful on earth.

‘At this kind of intensity we start to get into unexplored territory as it is an area of physics that we have never been before,’ he told the Sunday Telegraph.

The ELI ultra-high field laser, which will be completed by the end of the decade, will cost £1bn and the UK is among a number of European countries in the running to house it.

The European Commission has already authorised plans for three more lasers which will become prototypes for the ultra-high field laser.

Scientists hope the laser will also allow them to see how particles inside an atom behave and it is hoped it might be able to explain the mystery of why the universe contains more matter than previously detected by revealing what dark matter really is.

HOW IT WILL WORK

  • The ultra-high field laser will be made up of 10 beams – each more powerful than the prototype lasers.
  • It will produce 200 petawatts of power – more than 100,000 times the power of the world’s combined electricity production but in less than a trillionth a second.
  • The energy needed to power the laser will be stored up beforehand and then used to produce a beams several feet wide which will then be combined and eventually focused down onto a tiny spot.
  • The intensity of the beam is so powerful and will produce such extreme conditions, that do not even exist in the center of the sun.

Powerful: The ultra-high field laser will be made up of 10 beams - each more powerful than the prototypes

Powerful: The ultra-high field laser will be made up of 10 beams – each more powerful than the prototypes.

Via DailyMail

‘Super-Earth’ Found in Habitable Zone

leave a comment »

The Milky Way abounds with low-mass planets, including small, rocky ones such as Earth. That’s the main conclusion of a team of European astronomers, based on their latest haul of extrasolar planets. The new discoveries—55 new planets, including 19 “super-Earths”—were presented here today at the Extreme Solar Systems II conference by team leader Michel Mayor of the University of Geneva in Switzerland. “We find that 40% of all Sun-like stars are accompanied by at least one planet smaller than Saturn,” he says. The number of Earth-like planets is expected to be even higher.

The new planets were found with HARPS (High Accuracy Radial velocity Planet Searcher), an extremely sensitive instrument used to analyze starlight, mounted on the 3.6-meter telescope of the European Southern Observatory (ESO) at Cerro La Silla in northern Chile. HARPS detects the minute periodic wobbles of stars, caused by the gravity of orbiting planets. So far, HARPS has discovered 155 exoplanets, including two-thirds of all planets less massive than Neptune.

Of the 19 newly found super-Earths (exoplanets between a few and 10 times the mass of Earth), the most intriguing is HD 85512b, which weighs in at only 3.6 Earth masses. Its orbit lies in the habitable zone of its parent star, which means temperatures are just right for liquid water to exist on its surface, says Lisa Kaltenegger of the Max Planck Institute for Astronomy in Heidelberg, Germany. “We’re entering an incredibly exciting period in history.”

Meanwhile, scientists disagree about which technique offers the best chances of finding the first true “Earth analog”—an Earth-like planet orbiting in the habitable zone of its Sun-like star. (H85512b is too massive, and it’s star is too cool.) Mayor says HARPS might find this Holy Grail of exoplanet research within 5 years or so, after new upgrades to increase the instrument’s sensitivity. But planet hunter Geoffrey Marcy of the University of California, Berkeley, disagrees. NASA’s Kepler space telescope is “by far the best,” he says. “We will find them if they’re there, probably within the next 2 or 3 years.”

At the meeting, Kepler co-investigator Natalie Batalha of NASA’s Ames Research Center announced that the number of exoplanet candidates from the Kepler mission has increased by some 50% since last February, to 1781. Most are less than three times the size of the Earth. Kepler, launched in March 2009, finds planets by measuring the slight periodic dimming of their parent stars, when they happen to pass between the star and Earth.

No matter who finds the first Earth analog, the HARPS planets offer better prospects for detailed follow-up observations, Mayor says, because HARPS focuses on relatively nearby stars, while almost all Kepler stars are much farther away. For instance, ESO astronomer Markus Kissler-Patig predicts that the future 39.2-meter European Extremely Large Telescope (E-ELT) should be able to directly image HD 85512b. Analyzing the starlight it reflects will provide important information about the planet’s atmospheric composition. “The E-ELT will be able to probe for biomarkers,” Kissler-Patig says, referring to chemicals thought to indicate the presence of life.

While ESO is planning more-sensitive planet-hunting instruments for its existing Very Large Telescope and for the future E-ELT, Kepler is facing an uncertain future. “Kepler’s goal of finding true Earth analogs can only be reached by extending the mission duration” past its planned operational lifetime of 3.5 years, Batalha says. In February 2012, NASA will decide on a possible mission extension. Marcy is optimistic. Kepler is so incredibly successful, he says, that it seems unlikely NASA will terminate the mission next year. “I’m sure NASA is wiser than that.”

 

Via ScienceNow

SpaceX chief sets his sights on Mars

leave a comment »

Brendan Smialowski / Getty Images

SpaceX CEO Elon Musk stands alongside rocket models at the National Press Club as he announces plans to build the Falcon Heavy rocket. Observers say the heavy-lift launch system could send an 11-ton payload to Mars.

Don’t expect to hear any nostalgia about the soon-to-end space shuttle era from Elon Musk, the millionaire founder of Space Exploration Technologies. Musk isn’t prone to look to the past, but rather to the future — to a “new era of spaceflight” that eventually leads to Mars.

SpaceX may be on the Red Planet sooner than you think: When I talked with him in advance of the shuttle Atlantis’ last liftoff, the 40-year-old engineer-entrepreneur told me the company’s Dragon capsule could take on a robotic mission to Mars as early as 2016. And he’s already said it’d be theoretically possible to send humans to Mars in the next 10 to 20 years —  bettering NASA’s target timeframe of the mid-2030s.

You can’t always take Musk’s timelines at face value. This is rocket science, after all, and Musk himself acknowledges that his company’s projects don’t always finish on time. But if he commits himself to a task, he tends to see it through. “It may take more time than I expected, but I’ll always come through,” he told me a year ago.

Since that interview, a lot of things have come through for SpaceX. The company has conducted successful tests of its Falcon 9 rocket and Dragon capsule. Before the end of the year, another test flight is expected to send a Dragon craft all the way to the space station for the first time. If that test is successful, SpaceX can start launching cargo to the International Space Station under the terms of a $1.6 billion NASA contract.

The company is also in line to receive $75 million more from NASA to start turning the Dragon into a crew-worthy space taxi for astronauts by 2015 or so. And just today, the company broke ground on a California launch pad that could be used by the next-generation Falcon Heavy rocket starting in 2013.

Once the Dragon and the Falcon Heavy are in service, the main pieces would be in place for a Mars mission, Musk said.

“One of the ideas we’re talking to NASA about is … using Dragon as a science delivery platform for Mars and a few other locations,” he told me. “This would be possibly be several tons of payload — actually, a single Dragon mission could land with more payload than has been delivered to Mars cumulatively in history.”

SpaceX is working with NASA’s Ames Research Center in California on an interplanetary mission concept that could theoretically be put into effect for a launch “five or six years from now,” Musk said.

By that time, astronauts will once again be riding on U.S.-made spaceships to the space station, including the Dragon — that is, if the current schedules hold true. But there’s a lot of doubt surrounding those schedules. As you’d expect, the end of the space shuttle program and the shape of spaceships to come were major themes in my conversation with Musk. Here’s an edited version of the Q&A on those subjects:

Cosmic Log: A lot of people are saying that when the space shuttle stops flying, that might be the end of the American space program. The idea is that commercial spaceflight providers are not going to be able to do the job, and there won’t be sustainable interest in building the beyond-Earth-orbit rocket that NASA has on the drawing board. What’s your response to the claim that this is really the end?

Elon Musk: It flies in the face of the facts. Six months ago, we had the second launch of the Falcon 9 and the first launch of the Dragon. The Dragon orbited Earth twice, it performed orbital maneuvers, it made a precision re-entry under the control of thrusters, and it landed within a mile of our target. We brought the Dragon back, and it was actually in good enough condition that we could fly it again if we wanted to.

So as far as I’m concerned, it’s not the death of anything. What we’re really facing is quite the opposite. I think we’re at the dawn of a new era of spaceflight, one which is going to advance much faster than it ever has in the past.

The space shuttle was designed in the ’70s, and it really didn’t improve after almost 40 years. They’ve upgraded the electronics here and there, but that’s about it. That’s incredibly static when you consider how other fields of technology have improved.

Now, with the public-private partnership that NASA has established with SpaceX, and the efforts made by other companies, we’re actually going to see dramatic improvements in spaceflight technology for the first time since the ’60s. The Dragon is taking technology to a whole new level beyond the shuttle.

The shuttle is fairly constrained because it’s a winged vehicle with a landing gear. It can’t land anywhere except Earth, and even on Earth, it can land only on certain runways. It doesn’t have any ability to go beyond Earth orbit. But because the Dragon has a propulsion-based landing system and a much more capable heatshield than the shuttle’s, it can land anywhere in the solar system with a solid surface — as long as you can throw it there. The Falcon Heavy can throw it pretty much anywhere in the solar system.

Q: The Dragon certainly looks different from the shuttle, and some people might get the impression that it’s a step backward, back to the days of Apollo.

A: I’ve heard that. But I hope we can make it clear that this is actually a big step forward from the shuttle. It can do all sorts of things that the shuttle can’t do. People look at something like wings and say, yeah, that’s how a spaceship should look. But let’s say you had a boat, and you put wheels on it and drove it down the road. It’d look pretty silly, right? Well, why do you have wings in a vacuum?

Q: One of the issues that always comes up when discussing commercial involvement in NASA spaceflight is the safety issue. A lot of the critics of your program have focused on that concern as the sticking point. NASA certainly devotes a lot of attention to safety assurance, and some say that’s why it’s so expensive to put humans into space. Any attempt to cut corners on that would make the whole enterprise look questionable. How do you respond to that?

A: Well, first of all, I suspect that the people saying that wouldn’t have a problem flying on Southwest Airlines or driving a car or taking other types of transport that are not government-operated. The government does have a role in safety oversight, and anything we do for NASA goes through an extremely rigorous safety and liability examination. But I think what actually needs to happen is a dramatic improvement in safety. The current state of affairs with the shuttle is not acceptable at all. The shuttle’s accident rate is not OK. Who would get on an airplane if you had a 1.5 percent chance of dying?

Q: Do you see any sign that NASA has different standards for oversight of commercial operations and for the shuttle program? After all, there’s a whole army of engineers dealing with shuttle operations and processing.

A: I do think there are different standards. For us, the standards are higher. The shuttle, for example, has no escape system. We would not launch [astronauts on] our vehicle without an escape system, nor would NASA want us to. Also, with our vehicle, there’s far less to go wrong on any given flight. With the shuttle, if anything serious goes wrong with this extremely complex vehicle, it’s curtains. There’s no escape. If the shuttle’s level of reliability was acceptable, we could fly astronauts this year.

Q: Do you think NASA has the right vision for spaceflight? The idea is that space station resupply in low Earth orbit would be left to commercial ventures, freeing NASA up to develop the heavy-lift Space Launch System for exploration beyond Earth orbit. Some people have wondered whether the Space Launch System is really going to be necessary.

A: Personally, my view is that space transport overall should be much more of a private-public partnership, and that applies to heavy lift as well. The best use of NASA’s resources is to focus on the unique scientific instruments and payloads that are truly one-off items. That’s actually how it works right now for Earth-observing and space science missions. They launch the spacecraft primarily on United Launch Alliance rockets, a Delta or an Atlas. If it’s a probe to Mars, or to the asteroid belt, or it’s a weather satellite, it’ll go up on a United Launch Alliance rocket. Obviously, in the future, they’ll go up on our vehicles as well. I think that works pretty well, and I think it makes sense to extend that model to all sizes of rockets.

Q: So it sounds as if you see a role for SpaceX in exploration beyond Earth orbit. Do you see any scenario where a mission to the moon or Mars could be completely private-sector?

A: It’s not out of the question. I do think missions like that are ideally handled as public-private partnerships. There are questions about how you’d pay for the missions. But the absolute goal of SpaceX is to develop the technologies to make life multiplanetary, which means being able to transport huge volumes of people and cargo to Mars. So we’ll do whatever is necessary to achieve that goal.

 

Via MSNBC

Is the space effort dying or evolving?

leave a comment »

Pessimists are bemoaning the end of U.S. human spaceflight, but optimists see the next few years as a transition to a new paradigm that will energize commercial ventures and get astronauts beyond Earth orbit for the first time since the Nixon administration. Which way do you see it?

There seems to be plenty of gloom to go around as the space shuttle program nears its end. Hayden Planetarium director Neil deGrasse Tyson, a former member of the NASA Advisory Council and other commissions sizing up the space effort, had this to say via Twitter: “Apollo in 1969. Shuttle in 1981. Nothing in 2011. Our space program would look awesome to anyone living backwards through time.”

One of the astronauts on the first space shuttle flight in 1981, Bob Crippen, told me that he was disappointed that the shuttle program’s end would leave NASA “without the capability to put our astronauts in orbit ourselves.” And he questioned whether NASA had the right vision for future exploration. “I personally favored going to the moon,” he said.

The frustration flared up today during a House committee hearing with NASA Administrator Charles Bolden as the sole witness, or sole target. “We have waited for answers that have not come,” Science, Space and Technology Committee Chairman Ralph Hall, R-Texas, told Bolden. “We have run out of patience. … I would like to point out today that the committee reserves the right to open an investigation into these continued delays and join the investigation initiated by the Senate.”

Bolden, a retired Marine general, took the hostile fire. “You have the right guy here to criticize,” he said. “I am the leader of America’s space program.”

He laid out the main points of the post-shuttle plan:

  • Rely on the Russians and other partners for resupply of the International Space Station, at least until U.S. companies can finish work on the space vehicles they’re developing with NASA’s backing. The first commercial cargo craft could be flying to the station by the end of this year, and U.S.-made “space taxis” could be taking on astronauts by 2015.
  • Continue work on the Orion crew vehicle, which should be capable of carrying four astronauts on more ambitious trips beyond Earth orbit. Orion had been canceled as part of the Constellation back-to-the-moon program, after $5 billion had been spent on the program, but it was essentially resurrected as NASA’s “multipurpose crew vehicle,” or MPCV.
  • Build a new Space Launch System, or SLS, which will be based on shuttle-era and Apollo-era rocket technology. The design for the SLS has not yet been announced, which is why members of Congress are so frustrated. Bolden said it could take until the end of summer or even longer to get the SLS plan through its financial review. Congress passed a law calling for the MPCV spaceship and the SLS rocket to be ready by 2016, but Bolden said the 2017-2020 time frame was more realistic.
  • NASA is aiming to send astronauts to a near-Earth asteroid by 2025, and to Mars and its moons by the mid-2030s. Other stopovers, ranging from the moon to gravitational balance points in outer space, may be added along the way.

“We are not abandoning human spaceflight,” Bolden said. “American leadership in space will continue for at least the next half century because we have laid the foundation for success.”

So there is an evolving plan for the future … just as there was an evolving plan for the space shuttle system in the early to mid-1970s when the Apollo program came to an end. Under the best-case scenario, that plan will lead to actual flights within four to six years, which is less time than it took between the last Saturn 5 and the first shuttle launch. But there are lots of questions surrounding the post-shuttle plan:

  • How much money will NASA get? A draft report from the House Appropriations Committee calls for trimming the space agency’s budget by roughly 10 percent. (For details, check Space Policy OnlineParabolic Arc and Space News.) NASA officials as well as commercial spaceship developers say that budget reductions will slow down the transition to post-shuttle spaceflight even more.
  • Will the commercial sector succeed? Right now, NASA is committed to paying the Russians $56 million for each seat on a station-bound Soyuz craft, and the price is due to go up in 2014. Commercial providers such as SpaceX, Sierra Nevada and the Boeing Co. say that they can beat that price, but that they need NASA’s money to help cover development costs. Shuttle program veterans say the commercial providers still have to prove that their craft will be safe and reliable.
  • Will the commercial space taxis for low Earth orbit and the Orion MPCV/SLS system for going beyond Earth orbit complement each other the way NASA hopes? Larry Price, Lockheed Martin Space Systems’ deputy manager for the Orion program, told me that the two-track system served as an insurance policy for the post-shuttle space effort. “There’s a little bit of competitive pressure,” he acknowledged. “If the commercial guys run into any problem or delay for any reason, then we could back them up. And similarly, if we don’t meet our milestones, the commercial guys could evolve into our niche.”

After 30 years of grand successes, tragic failures and unfulfilled promises, the era of the space shuttle is ending. We may not yet know exactly what kind of American spaceship will be the next to fly. And because of that, thousands of people will be laid off by NASA and its contractors in the weeks ahead. But we’re not witnessing the death of the American space program. At least that’s the way Elon Musk, the millionaire founder of SpaceX, sees it.

“As far as I’m concerned, it’s not the death of anything,” he told me. “What we’re really facing is quite the opposite. I think we’re at the dawn of a new era of spaceflight, one which is going to advance much faster than it ever has in the past.”

Now why would he say that? Over the next few days, we’ll be presenting a series of Q&A interviews with Musk and other folks involved in shaping the post-shuttle era. What they’ve told me runs counter to the gloom-and-doom talk, but you might well have a different opinion. Feel free to weigh in with your comments.

 

Alan Boyle

Android phone goes into orbit

leave a comment »

The mobile-phone space race has ended in a tie: Last month we found out that NASA’s final space shuttle flight was taking a couple of iPhones to the International Space Station, and it turns out that an Android phone was aboard the shuttle Atlantis as well.

The Google-powered Samsung Nexus S phone will be used on the station in a series of experiments aimed at developing free-flying robotic assistants — zero-gravity gizmos that were inspired by the zippy little training sphere that helped Luke Skywalker practice his lightsaber skills in “Star Wars.” These volleyball-sized free-fliers are known as SPHERES — which is short for Synchronized Position Hold, Engage, Reorient Experimental Satellites.

SPHERES prototypes have been in the works for more than a decade. The camera-equipped, thruster-driven devices were developed by students at the Massachusetts Institute of Technology in cooperation with the Defense Department and NASA, for possible use as remote-controlled observers in microgravity environments. You could imagine a spyball floating through far-off modules of a space station to make sure all systems were go, during times when the station’s human crew is otherwise occupied. Future versions of the device could also look over the shoulder of a spacewalker to give Mission Control an up-close video view of the action.

The beauty part is that the SPHERES prototypes have an expansion port for plugging in extra devices or appendages — and the Samsung Nexus S is the first smartphone to be plugged in.

“By connecting a smartphone, we can immediately make SPHERES more intelligent,” D.W. Wheeler, lead engineer in the Intelligent Robotics Group at NASA’s Ames Research Center, said in a NASA news release. “With a smartphone, the SPHERES will have a built-in camera to take pictures and video, sensors to help conduct inspections, a powerful computing unit to make calculations, and a Wi-Fi connection that we will use to transfer data in real time to the space station and Mission Control.”

Neither the Android phones nor the iPhones are being used to make actual phone calls: Space station residents have special satellite-linked Internet phones for that. But today’s smartphones pack so much computing power that they could come in handy as backup navigation devices (in the iPhones’ case) or satellite controllers (in the Android phone’s case).

“We’ll start by simulating a mobile inspection of the station to test how well SPHERES can move around and collect data using the smartphone’s camera and sensors,” said Terry Fong, director of the Intelligent Robotics Group. “This will tell us basic information about the light and sound levels inside various areas of the station. Then we’ll use SPHERES to conduct an interview with a crewmember — a task that usually requires two crew members to complete. We’ll have Mission Control and the smartphone-enhanced SPHERES take the place of the astronaut holding the video camera.”

Just having the phones on the space station serve as status symbols for the companies involved.

“Samsung is proud to have the Nexus S chosen to be aboard NASA’s final space shuttle launch, an event that is historical,” Dale Sohn, president of Samsung Mobile, said in the news release. “The research that is being conducted with SPHERES using the Nexus S will help monitor and communicate from the International Space Station.”

So what about all the other smartphones and tablets that are out there? Because this is the last shuttle flight, future gizmos will have to be certified for flight on other types of space transports, such as the Russian Soyuz or Progress craft, European and Japanese cargo spaceships, or on commercial vehicles that are currently under development.

The future telecom space race may well be a contest to see which company can extend its calling network to the final frontier. I’m sure there are some future space tourists who’d love to flip on their phone while flying on SpaceShipTwo, call down to their pals and say, “Can you hear me now?” What do you think?

 

Via MSNBC

Discovery Adds Mystery to Earth’s Genesis

leave a comment »

Artist's conception of a dusty planet-forming disk orbiting a stellar object known as IRS 46.

Earth and the other rocky planets aren’t made out of the solar system’s original starting material, two new studies reveal.

Scientists examined solar particles snagged in space by NASA’s Genesis probe, whose return capsule crash-landed on Earth in 2004. These salvaged samples show that the sun’s basic building blocks differ significantly from those of Earth, the moon and other denizens of the inner solar system, researchers said.

Nearly 4.6 billion years ago, the results suggest, some process altered many of the tiny pieces that eventually coalesced into the rocky planets, after the sun had already formed.

“From any kind of consensus view, or longer historical view, this is a surprising result,” said Kevin McKeegan of UCLA, lead author of one of the studies. “And it’s just one more example of how the Earth is not the center of everything.”

Salvaging the samples

The Genesis spacecraft launched in 2001 and set up shop about 900,000 miles (1.5 million kilometers) from Earth. It spent more than two years grabbing bits of the solar wind, the million-mph stream of charged particles blowing from the sun.

The idea was to give scientists an in-depth look at the sun’s composition, which in turn could help them better understand the formation and evolution of the solar system.

To that end, Genesis sent its sample-loaded return capsule back to Earth in September 2004. But things didn’t go well; the capsule’s parachute failed to deploy, and it smashed into the Utah dirt at 190 mph (306 kph).

While some of Genesis’ samples were destroyed in the crash, others were salvageable, as the two new studies show. Two different research teams looked at the solar wind particles’ oxygen and nitrogen — the most abundant elements found in Earth’s crust and atmosphere, respectively.

And they did so with a great deal of care, knowing that the crash had limited their supplies of pristine solar material.

“The stakes were raised on the samples that did survive well,” McKeegan told SPACE.com. “There wasn’t as much to go around.”

The Genesis return capsule slammed into the Utah dirt at nearly 200 mph on Sept. 8, 2004 when its parachute failed to deploy.

The Genesis return capsule slammed into the Utah dirt at nearly 200 mph on Sept. 8, 2004 when its parachute failed to deploy.
CREDIT: NASA/JPL

Analzying oxygen

McKeegan and his team measured the abundance of solar wind oxygen isotopes. Isotopes are versions of an element that have different numbers of neutrons in their atomic nuclei. Oxygen has three stable isotopes: oxygen-16 (eight neutrons), oxygen-17 (nine neutrons) and oxygen-18 (ten neutrons).

The researchers found that the sun has significantly more oxygen-16, relative to the other two isotopes, than Earth. Some process enriched the stuff that formed our planet — and the other rocky bodies in the inner solar system — with oxygen-17 and oxygen-18 by about 7 percent.

While scientists don’t yet know for sure how this happened, they have some ideas. The leading contender, McKeegan said, may be a process called “isotopic self-shielding.”

About 4.6 billion years ago, the planets had not yet coalesced out of the solar nebula, a thick cloud of dust and gas. Much of the oxygen in this cloud was probably bound up in gaseous carbon monoxide (CO) molecules.

But the oxygen didn’t stay bound up forever. High-energy ultraviolet light from the newly formed sun (or nearby stars) blasted into the cloud, breaking apart the CO. The liberated oxygen quickly glommed onto other atoms, forming molecues that eventually became the rocky building blocks of planets.

Photons of slightly different energy were required to chop up the CO molecules, depending on which oxygen isotope they contained. Oxygen-16 is far more common than either of the other two, so there would have been much more of this substance throughout the solar nebula, researchers said.

The result, the self-shielding theory goes, is that many of the photons needed to break up the oxygen-16 CO were “used up,” or absorbed, on the edges of the solar nebula, leaving much of the stuff in the cloud’s interior intact.

By contrast, relatively more of the photons that could strip out oxygen-17 and oxygen-18 got through to the inner parts of the cloud, freeing these isotopes, which were eventually incorporated into the rocky planets. And that, according to the theory, is why the sun and Earth’s oxygen isotope abundances are so different.

“The result that we’re publishing this week gives support to the self-shielding idea,” McKeegan said. “But we don’t know the answer yet.”

Nitrogen, too

In a separate study, another research team led by Bernard Marty of Nancy University in France analyzed the nitrogen isotopes in Genesis’ samples. (Nitrogen has two stable isotopes: nitrogen-14, which has seven neutrons, and nitrogen-15, which has eight.)

Marty and his colleagues found an even more dramatic difference than McKeegan’s group did: The solar wind has about 40 percent less nitrogen-15 (compared to nitrogen-14) than do samples taken from Earth’s atmosphere.

Previous studies had hinted that the sun’s nitrogen might be very different from that of Earth, Mars and other rocky bodies in the inner solar system, Marty said. But the new study establishes this firmly.

“Before Genesis and the present measurement of the N isotopic composition of the solar wind and by extension of the sun, it was not possible to understand the logic of such variations,” Marty told SPACE.com in an email interview. “Now we understand that the starting composition, the solar nebula, was poor in 15N, so that variations among solar system objects are the result of mixing with a 15N-rich end-member.”

As to how this enrichment of nitrogen-15 could have happened, Marty as well suggests some type of self-shielding as a possible mechanism. But it’s not a certainty.

“This is a scenario that is consistent with present-day observations,” he said. “We cannot eliminate yet the possibility that these 15N-rich compounds were imported from outer space as dust in the solar system.”

The new results also suggest that most nanodiamonds — tiny carbon specks that are a major component of stardust — likely formed in our own solar system, because they share similar nitrogen isotope ratios with the sun. Some scientists have regarded nanodiamonds as being primarily presolar, thinking they were ejected from other stellar systems by supernova explosions.

Both studies appear in the June 23 issue of the journal Science.

Genesis’ legacy

The two new studies should help scientists get a better understanding of the solar system’s early days, researchers said.

And the results should help rehabilitate the reputation of the $264 million Genesis mission, showing that the capsule crash didn’t render it a failure, McKeegan said.

“We managed to accomplish all the science that we set out to do, all the important stuff,” he said. “The enduring image in everybody’s mind — the picture of the crashed spacecraft in the desert — will be more of a footnote instead of the primary thing that people remember. That’s my hope, anyway.”

 

Via Space

Solstice Sun Storm May Spark Dazzling Northern Lights Today

leave a comment »

Norwegian photographer and skywatcher Terje Sorgjerd created an amazing video of the March 2011 auroras, or northern lights, which appear in this still from his project, entitiled "The Aurora.”

Norwegian photographer and skywatcher Terje Sorgjerd created an amazing video of the March 2011 auroras, or northern lights, which appear in this still from his project, entitiled “The Aurora.” CREDIT: Terje Sorgjerd

A wave of sun particles unleashed during a strong solar flare this week is arriving at Earth today (June 24) and could touch off a dazzling northern lights display, NASA officials say.

The solar storm occurred Tuesday, June 21, during Earth’s solstice, which marked the first day of summer in the Northern Hemisphere and the start of winter in the Southern Hemisphere.

The storm triggered a powerful explosion on the sun, called a coronal mass ejection, which sent a vast wave of solar particles directly at Earth at a speed of about 1.4 million mph (2.3 million kph). Those particles are now buffeting Earth’s magnetic field in interactions that could amplify the planet’s polar auroras, also known as the northern and southern lights.

“High-latitude sky watchers should be alert for auroras,” officials with NASA’s Goddard Space Center said in an update today.

Sun photo of June 21, 2011 solar storm and eruption

The SOHO sun observatory caught this view of a large solar flare and coronal mass ejection (top of sun) erupting from the sun’s surface early June, 21, 2011. CREDIT: SOHO/NASA/ESA

Supercharged auroras

Auroras occur when solar wind particles collide with atoms of oxygen and nitrogen in Earth’s upper atmosphere. The interaction excites the atoms, which then emit light (the aurora) as they return to their normal energy level.

Tuesday’s solar flare registered as a class C7.7 flare (C-class flares are the weakest types of flares), but lasted for several hours. There are three classes of solar flares. M-class solar flares are medium-strength flares, while the most intense solar storms register as X-class flares.

There is a 30 percent to 35 percent chance of a minor geomagnetic storm in Earth’s atmosphere today from this week’s storm, NASA officials said.

 

Partial Halo Coronal Mass Ejection

A broadly widening cloud of particles, observed by SOHO’s C3 coronagraph, rushed away from the Sun as a coronal mass ejection (CME) erupted over about 12 hours (June 14, 2011). Data from the Solar Dynamics Observatory shows an eruptive prominence breaking away from the Sun about where the event originated. While the originating event did not appear to be substantial, the particle cloud was pretty impressive. The bright circle with an extending horizontal line (above and left of the blue occulting disk) is a distortion caused by the brightness of planet Mercury. CREDIT: SOHO (ESA & NASA)

The active sun

This week’s solar flare was detected by the space-based Solar and Heliospheric Observatory (SOHO) operated by NASA and the European Space Agency. It came just weeks after another strong solar flare on June 7, which unleashed a massive coronal mass ejection that stunned astronomers with its intensity.

The June 7 event  kicked up a wave of plasma that rained back down on the sun over an area 75 times the width of Earth. The leading edge of the particles that erupted from the sun were traveling at about 3.5 million mph (5.7 million kph), SOHO officials have said.

Another coronal mass ejection on June 14 unleashed an eerie wave of material that formed a partial halo as it expanded into space.

The most severe solar storms, when aimed at Earth, can pose a danger to astronauts in space, satellites and even ground-based communications and power systems. This week’s solar flare, however, is not powerful enough to pose a serious risk, NASA officials said.

The sun is currently in an active period of its 11-year solar cycle. NASA and other space and weather agencies are keeping a close watch on the sun using space-based observatories, satellites and ground-based monitoring systems.

 

Via Space