The Interesting, The Strange, The News.

Posts Tagged ‘Large Hadron Collider

Scientists plan $1.5bn laser strong enough ‘to tear the fabric of space

leave a comment »

A laser powerful enough to tear apart the fabric of space could be built in Britain.

The major scientific project will follow in the footsteps of the Large Hadron Collider and will answer questions about the universe.

The laser will be capable of producing a beam of light so intense that it will be similar to the light the earth receives from the sun but focused on a speck smaller than a pin prick.

Extreme: A laser powerful enough to tear apart the fabric of space could be built in Britain

Extreme: A laser powerful enough to tear apart the fabric of space could be built in Britain.

Scientists say it will be so powerful they will be able to boil the very fabric of space and create a vacuum.

A vacuum fizzles with mysterious particles that come in and out of existence but the phenomenon happens so fast that no-one has ever actually been able to prove it.

It is hoped the Extreme Light Infrastructure Ultra-High Field Facility would allow scientists to prove the particles are real by pulling the vacuum fabric apart.

Scientists even believe it might help them to prove whether other dimensions actually exist.

This latest experiment will follow the footsteps of the Large Hadron Collider and be the next big scientific experiment

This latest experiment will follow the footsteps of the Large Hadron Collider and be the next big scientific experiment.

Professor John Collier, a scientific leader for the ELI project and director of the Central Laser Facility at Rutherford Appleton Laboratory in Didcot, Oxfordshire, said the laser would be the most powerful on earth.

‘At this kind of intensity we start to get into unexplored territory as it is an area of physics that we have never been before,’ he told the Sunday Telegraph.

The ELI ultra-high field laser, which will be completed by the end of the decade, will cost £1bn and the UK is among a number of European countries in the running to house it.

The European Commission has already authorised plans for three more lasers which will become prototypes for the ultra-high field laser.

Scientists hope the laser will also allow them to see how particles inside an atom behave and it is hoped it might be able to explain the mystery of why the universe contains more matter than previously detected by revealing what dark matter really is.


  • The ultra-high field laser will be made up of 10 beams – each more powerful than the prototype lasers.
  • It will produce 200 petawatts of power – more than 100,000 times the power of the world’s combined electricity production but in less than a trillionth a second.
  • The energy needed to power the laser will be stored up beforehand and then used to produce a beams several feet wide which will then be combined and eventually focused down onto a tiny spot.
  • The intensity of the beam is so powerful and will produce such extreme conditions, that do not even exist in the center of the sun.

Powerful: The ultra-high field laser will be made up of 10 beams - each more powerful than the prototypes

Powerful: The ultra-high field laser will be made up of 10 beams – each more powerful than the prototypes.

Via DailyMail

A step closer to explaining our existence

leave a comment »

Fred Ullrich / Fermilab

Confidence is growing in results from a particle physics experiment at the Tevatron collider that may help explain why the universe is full of matter.

Why are we here? It remains one of the largest unexplained mysteries of the universe, but particle physicists are gaining more confidence in a result from an atom smashing experiment that could be a step toward providing an answer.

We exist because the universe is full of matter and not the opposite, so-called antimatter. When the Big Bang occurred, equal parts of both should have been created and immediately annihilated each other, leaving nothing leftover to build the stars, planets and us.

Thankfully, it didn’t happen that way. There’s an asymmetry between matter and antimatter. Why this is remains inadequately explained, Stefan Soldner-Rembold, a co-spokesman for the particle physics experiment at the Fermi National Accelerator Laboratory  outside of Chicago, told me on Thursday.

“We are looking for a larger asymmetry than we currently know in the best theories in physics, which is called the standard model,” said Soldner-Rembold, who is based at the University of Manchester in England.

Using the Fermilab’s Tevatron collider, members of the DZero experiment are smashing together protons and their antiparticle, called antiprotons, which are perfectly symmetric in terms of matter and antimatter, he explained.

“So you expect what comes out will also be symmetric in terms of matter and antimatter,” he said. “But what we observe is that there is a slight, on the order of 1 percent, asymmetry where more matter particles are produced than antiparticles.”

This 1 percent asymmetry is larger than predicted by the standard model and thus helps explain why there is more matter than antimatter in the universe.

The DZero team announced this finding of asymmetry in 2010, but their confidence in the result wasn’t sufficient to call it a discovery. At that point, there was a 0.07 chance the result was due to a random fluctuation in the data.

The team has now analyzed 1.5 times more data with a refined technique, increasing their confidence in the result. The probability that the asymmetry is due to a random fluctuation is now just 0.005 percent. They’d like to get to an uncertainty of less than 0.00005 percent before popping open the champagne.

The new results were presented Thursday at Fermilab.

“There are very high thresholds in physics so that people can really call something a discovery and be absolutely sure,” Soldner-Rembold said. “We are going in the right direction.”

Even more work at Fermilab and further, complementary experiments with the Large Hadron Collider in Geneva will be required to shore up confidence that what they are seeing really is real, and thus a step toward explaining why the universe has much more matter than antimatter.

“To really understand how the universe evolved is the next step,” he said. “We do a particular process in the lab. In order to say is this enough to explain the amount of matter around us is not as easy as saying 1 percent sounds good.”

And for those hoping that science has all the answers, Soldner-Rembold cautions that science will never answer the question of “why we are here, it only tries to understand the underlying laws of nature.”


Via MSNBC/John Roach

Densest Matter Created in Big-Bang Machine

leave a comment »

The ALICE detector at the Large Hadron Collider.

A superhot substance recently made in the Large Hadron Collider  is the densest form of matter ever observed, scientists announced this week.

Known as a quark-gluon plasma, the primordial state of matter may be what the entire universe was like in the immediate aftermath of the big bang.

The exotic material is more than a hundred thousand times hotter than the inside of the sunand is denser than a neutron star, one of the densest known objects in the universe.

“Besides black holes, there’s nothing denser than what we’re creating,” said David Evans, a physicist at the University of Birmingham in the U.K. and a team leader for the LHC’s ALICE detector, which helped observe the quark-gluon plasma.

“If you had a cubic centimeter of this stuff, it would weigh 40 billion tons.”

Densest Matter Acts Like Perfect Liquid

By triggering hundreds of thousands of high-speed collisions each second, physicists using the LHC hope to break subatomic particles into even more basic forms of matter, which can be used to study what the universe was like a trillionth of a second after the big bang.

LHC scientists made the quark-gluon plasma last year by smashing together lead ions—lead atoms that have been stripped of their electrons—at nearly the speed of light.

As the name suggests, quark-gluon plasma is made up of quarks and gluons. Quarks are the elementary building blocks of positively charged protons and neutral neutrons, which make up atomic cores. Gluons are particles that “glue” quarks together using the so-called strong force.

It’s thought that, as the universe cooled, the quark-gluon plasma that existed after the big bang coalesced to form matter as we know it today.

The quark-gluon plasma created at the LHC is about twice the amount and about twice as hot as quark-gluon plasma previously made using the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in Upton, New York.

Still, the plasmas created by the two machines are very similar, scientists said this week during the Quark Matter 2011 Conference in Annecy, France. For example, scientists have now confirmed that both versions behaved like so-called perfect liquids, with nearly zero friction.

“If you stir a cup of tea with a spoon and then take the spoon out, the tea stirs for a while and then it stops. If you had a perfect liquid and you stirred it, it would carry on going around forever,” Evans explained.

Some theories predict that, in the extreme heat of the very early universe, quarks and gluons would have been even more widely spaced, creating a quark-gluon plasma that behaved like a gas. The ALICE team is therefore looking for evidence of gas-like behavior in the early stages of their quark-gluon plasma formation.

“There are slight differences between our measurement and RHIC’s,” Evans said.

“It could well be that in the very early stages [of our quark-gluon plasma], it’s behaving more like a gas, and then as it cools it turns into a liquid, but we will need to investigate this further.”

Highs and Lows of Making Matter

If this gas-to-liquid transition has indeed been observed, it would be surprising, since theory predicts that it should occur at much higher temperatures than those currently being produced at the LHC, said Thomas Ludlam, chair of the physics department at Brookhaven.

“I would regard the ALICE claim that they may be seeing hints of this as very interesting, but rather speculative at this stage,” said Ludlam, who was not involved in the project.

The results are nevertheless very exciting, he added. “They show that the LHC”—which went online in 2009 after more than a year’s delay due to mechanical problems—”is squarely in the game now.”

Also, by comparing the lower energy quark-gluon plasma created at the RHIC with the higher energy version from the LHC, scientists could gain a better understanding of how and when the substance changed as the universe cooled, Ludlam said.

“I think we’re now at a point where, with these two machines, we can look over a very wide energy range at the properties of the quark-gluon plasma as it evolves with temperature and density,” Ludlam said.

With this goal in mind, he added, RHIC scientists have been trying for the past year to create a quark-gluon plasma at even lower energies, to find the temperature at which quarks and gluons come together to form protons and neutrons.

Meanwhile, the LHC is still operating at only half of its maximum energy, and the ALICE team expects to create even denser forms of quark-gluon plasma as the machine ramps up in the future.

Via NatGeo